spin_llm_local/
llama.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::InferencingModel;
use anyhow::{anyhow, bail, Context, Result};
use candle::{safetensors::load_buffer, utils, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::{
    generation::{LogitsProcessor, Sampling},
    models::llama::{self, Cache, Config, Llama, LlamaConfig},
};
use rand::{RngCore, SeedableRng};
use spin_core::async_trait;
use spin_world::v2::llm::{self as wasi_llm, InferencingUsage};
use std::{collections::HashMap, fs, path::Path, sync::Arc};
use tokenizers::Tokenizer;

const TOKENIZER_FILENAME: &str = "tokenizer.json";
const CONFIG_FILENAME: &str = "config.json";
const EOS_TOKEN: &str = "</s>";
const MODEL_SAFETENSORS_INDEX_FILE: &str = "model.safetensors.index.json";

pub fn auto_device() -> Result<Device> {
    if utils::cuda_is_available() {
        Ok(Device::new_cuda(0)?)
    } else if utils::metal_is_available() {
        Ok(Device::new_metal(0)?)
    } else {
        Ok(Device::Cpu)
    }
}

#[derive(Clone)]
pub(crate) struct LlamaModels {
    model: Arc<Llama>,
    config: Config,
    cache: Cache,
    tokenizer: Tokenizer,
    device: Device,
}

impl LlamaModels {
    pub async fn new(model_dir: &Path) -> Result<Self> {
        let tokenizer_path = model_dir.join(TOKENIZER_FILENAME);
        let config_path = model_dir.join(CONFIG_FILENAME);

        let dtype = candle::DType::F16;
        let device = auto_device()?;

        let tokenizer = Tokenizer::from_file(tokenizer_path).map_err(|e| anyhow!(e.to_string()))?;
        let config: LlamaConfig = serde_json::from_slice(&fs::read(config_path)?)?;

        // TODO: flash attention is supposed to minimize memory read and writes - Do we want to turn it on
        let config = config.into_config(false);
        let cache = llama::Cache::new(true, dtype, &config, &device)?;

        let safetensor_files = load_safetensors(model_dir, MODEL_SAFETENSORS_INDEX_FILE)?;

        let mut tensor_map: HashMap<String, Tensor> = HashMap::new();

        for file in safetensor_files {
            let data = fs::read(file)?;
            let tensors = load_buffer(&data, &device)?;
            for (k, v) in tensors {
                tensor_map.insert(k, v);
            }
        }
        let vb = VarBuilder::from_tensors(tensor_map, dtype, &device);
        let model = Llama::load(vb, &config)?;

        Ok(Self {
            model: Arc::new(model),
            config,
            cache,
            tokenizer,
            device,
        })
    }
}

#[async_trait]
impl InferencingModel for LlamaModels {
    async fn infer(
        &self,
        prompt: String,
        params: wasi_llm::InferencingParams,
    ) -> anyhow::Result<wasi_llm::InferencingResult> {
        let model = Arc::clone(&self.model);
        let config = &self.config;
        let tokenizer = self.tokenizer.clone();
        let mut cache = self.cache.clone();
        // Try to retrieve the End of Sentence (EOS) token ID from config or
        // default to a single EOS token. EOS token is used to determine when to stop.
        let eos_token_id = config.clone().eos_token_id.or_else(|| {
            tokenizer
                .token_to_id(EOS_TOKEN)
                .map(llama::LlamaEosToks::Single)
        });

        let mut tokens = tokenizer
            .encode(prompt, true)
            .map_err(|e| anyhow!(e.to_string()))?
            .get_ids()
            .to_vec();
        let mut rng = rand::rngs::StdRng::from_entropy();

        let mut logits_processor = {
            let temperature = params.temperature;
            let sampling = if temperature <= 0. {
                Sampling::ArgMax
            } else {
                Sampling::TopKThenTopP {
                    k: params.top_k as usize,
                    p: params.top_p as f64,
                    temperature: params.temperature as f64,
                }
            };
            LogitsProcessor::from_sampling(rng.next_u64(), sampling)
        };

        let mut index_pos = 0;
        let mut tokens_generated = 0;

        for index in 0..params.max_tokens {
            let (context_size, context_index) = if self.cache.use_kv_cache && index > 0 {
                (1, index_pos)
            } else {
                (tokens.len(), 0)
            };
            let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
            let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
            let logits = model.forward(&input, context_index, &mut cache)?;
            let logits = logits.squeeze(0)?;
            let logits = if params.repeat_penalty == 1. {
                logits
            } else {
                let start_at = tokens
                    .len()
                    .saturating_sub(params.repeat_penalty_last_n_token_count as usize);
                candle_transformers::utils::apply_repeat_penalty(
                    &logits,
                    params.repeat_penalty,
                    &tokens[start_at..],
                )?
            };
            index_pos += ctxt.len();

            let next_token = logits_processor.sample(&logits)?;
            tokens_generated += 1;
            tokens.push(next_token);

            // Validate if we have reached the end of the token(s)
            match eos_token_id {
                Some(llama::LlamaEosToks::Single(eos_tok_id)) if next_token == eos_tok_id => {
                    break;
                }
                Some(llama::LlamaEosToks::Multiple(ref eos_ids))
                    if eos_ids.contains(&next_token) =>
                {
                    break;
                }
                _ => (),
            }
        }

        let output_text = tokenizer
            .decode(&tokens, true)
            .map_err(|e| anyhow!(e.to_string()))?;

        Ok(wasi_llm::InferencingResult {
            text: output_text,
            usage: InferencingUsage {
                prompt_token_count: tokens.len() as u32,
                generated_token_count: tokens_generated,
            },
        })
    }
}

///  Loads a list of SafeTensors file paths from a given model directory and
///  path to the model index JSON file relative to the model folder.
fn load_safetensors(model_dir: &Path, json_file: &str) -> Result<Vec<std::path::PathBuf>> {
    let json_file = model_dir.join(json_file);
    let json_file = std::fs::File::open(&json_file)
        .with_context(|| format!("Could not read model index file: {json_file:?}"))?;
    let json: serde_json::Value =
        serde_json::from_reader(&json_file).map_err(candle::Error::wrap)?;
    let weight_map = match json.get("weight_map") {
        None => bail!("no weight map in {json_file:?}"),
        Some(serde_json::Value::Object(map)) => map,
        Some(_) => bail!("weight map in {json_file:?} is not a map"),
    };

    let mut safetensors_files = std::collections::HashSet::new();
    for value in weight_map.values() {
        if let Some(file) = value.as_str() {
            safetensors_files.insert(file.to_string());
        }
    }
    let safetensors_files = safetensors_files
        .iter()
        .map(|v| model_dir.join(v))
        .collect::<Vec<_>>();
    Ok(safetensors_files)
}